SMART

WEIGHING SOLUTIONS

T-Series Modules

(T610, T620, T105) Reference Manual

Copyright

All Rights Reserved. No part of this document may be copied, reproduced, republished, uploaded, posted, transmitted, distributed, stored in or introduced into a retrieval system in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise) whatsoever without prior written permission of Rinstrum Pty Ltd.

Disclaimer

Rinstrum Pty Ltd reserves the right to make changes to the products contained in this manual in order to improve design,

performance or reliability.

The information in this manual is believed to be accurate in all respects at the time of publication, but is subject to change without notice. Rinstrum Pty Ltd assumes no responsibility for any errors or omissions and disclaims responsibility for any consequences resulting from the use of the information provided herein.

Table of Contents

		Table of Solitons			
1.	INTR	RODUCTION	4		
	1.1.	Digital Weight Transmitters	4		
	1.2.	RinWIRE interface converters	4		
	1.3.	Overview	5		
	1.4.	RINSTRUM R300 viewer connection (T610 & T620)	5		
		1.4.1. Methods to connect to viewer			
		1.4.2. Serial configuration	6		
2.	SPEC	CIFICATIONS	7		
	2.1.	Specification Table Digital Weight Transmitters	7		
	2.2.	Specification Table rinWIRE interface converter	8		
3.	PIN D	DIAGRAMS	9		
	3.1.	Digital Weight Transmitter T610	9		
	3.2.	Digital Weight Transmitter T620	9		
	3.3.	rinWIRE Interface Converter T105	10		
4.	RINW	NIRE COMMUNICATION CABLING SYSTEM	11		
	4.1.	T610 connections.	11		
		4.1.1. RINWIRE connector	11		
		4.1.2. Simple connection	11		
	4.2.	T620 connections.	11		
		4.2.1. rinWIRE T-Junction	11		
		4.2.2. Custom connection chains can be built using rinWIRE T-junction	12		
5.	PRO [*]	TOCOL OVERVIEW	13		
	5.1.	Basic Message Format	13		
		5.1.1. ADDR	13		
		5.1.2. CMD	14		
		5.1.3. REG	14		
		5.1.4. :DATA	15		
	5.2.	Termination	16		
	5.3.	Error Handling	16		
	5.4.	Overall Communication Framing	17		
6.	APPE	ENDIX - EXAMPLES	18		
7.	APPE	ENDIX - T610 DIMENSIONS	20		
8.	APPE	APPENDIX – T620 DIMENSIONS21			
9.	APPENDIX - T105 DIMENSIONS22				
10	GLO	SSARY TERMS	23		

1.Introduction

The T6xx modules are digital weight transmitters that use the rinWIRE interface which implements RS485 serial communication protocol to connect devices in a ring network.

Digital weight Transmitters are used to connect load cells into the rinWIRE network and transmit the weights according to the protocol that uses ASCII characters with a single master POLL / RESPONSE message structure.

As all the devices in rinWIRE network must use the same serial communications signals. The T-Series Interface converters are used to convert the RS232 serial signals to the RS485 serial signals.

1.1. Digital Weight Transmitters

Figure 1 - T610

Figure 2 - T620

1.2. RinWIRE interface converters

Figure 3 - T105

Page 4 T000-600-200

1.3. Overview

The T-series modules use the rinWIRE digital interface which has the following characteristics:

- Uses standard RS485 serial communications signals.
- RJ45 connectors are supported for internal applications, M12 waterproof connections are recommended for outdoor waterproof applications.
- All connections are made with straight through 8-way cat5 ethernet cable wired according to the standard Power-over-Ethernet standard.
- Power is provided to the modules through the cable and ranges from 7 to 15Vdc.
- Each sensor regenerates the communication signals so there is no need for network termination devices to balance the network as with standard RS485.
- rinWIRE supports both individually addressed communications and broadcast messages.
 Due to its unique architecture devices do not need to have unique addresses when first added to the network.
- Provision is made for synchronization of all devices on the network.
- Up to 31 devices can be connected to the rinWIRE network.
- The rinWIRE network presents to the host controller as a single multi-channel device.
 Broadcast queries can be issued which collect responses from all units in a single transaction.
- rinWIRE supports ring, tree and star network configurations due to the unique connection details within each connection device. In all cases standard straight through Cat5 cable is all that is required

1.4. RINSTRUM R300 viewer connection (T610 & T620)

Figure 4 - T6xx connected with RINSTRUM R300 viewer.

More than just Digital weight transmitters the T610/T620 can be connected to the RINSTRUM R300 Viewer, which enables the following:

- Get weight displayed.
- Can do calibrations for the loadcells: mV/V factory calibration or direct mV/V or test weight calibration.
- Virtual access for Zero, Tare and Gross/Net keys.
- Standard weight status like Overload, Underload, Error, Motion, Centre of Zero, and Zero Band are displayed which enables simple scale functionality possible.

1.4.1. Methods to connect to viewer

Using RS485 to USB converter:

- Connect T610/T620 to the RS485 to USB converter with appropriate connections (refer sections 3.1 and 3.2 for pin diagrams).
- If the RS485 to USB converter don't have a built-in power supply, powerup the Digital weigh transmitters using an external power supply.

Using T105 and RS232 to USB converter:

- Connect the T610/T620 to T105's RJ45 port with appropriate cabling.
 - T610: cat5 patch cable.
 - T620: 8pin M12 connector to RJ45 connector (refer sections 3.1 and 3.2 for pin diagrams).
- Use a RS232 to USB converter to connect T105 with PC.
- External power supply for T105.

Using T105 and directly connecting to a PC with RS232 serial port:

- Connect the T610/T620 to T105 as mentioned above.
- Connect the T105's RS232 serial port with the PC's RS232 serial port directly.

1.4.2. Serial configuration

Baud Rate : 9600Data Bits : 8Parity : NoneStop Bits : 1

Page 6 T000-600-200

2. Specifications

2.1. Specification Table Digital Weight Transmitters

	T610	T620		
Resolution	min 0.25 μV/division			
Zero Cancellation	±2.0 mV/V			
Span Adjustment	0.1mV/V to 3.0mV/	V full scale		
Excitation	5VDC for up to 4 x 350 ohm loadcells			
A/D Type	24 Bit Sigma Delta – 8,388,608 internal counts			
Operating Environment	Compensated: -10°C to +50°C	Operating: -20°C to +60°C		
Digital Filter	FIR: 80 dB, FIFO:	100 sample		
Conversion Rate	20-100 H	z		
Stability/Drift	Zero: < 0.1 μV/°C (+ 8ppm of deadload max) Span < 8 ppm/°C, Linearity < 20ppm, Noise < 0.2 μVp-p			
Power input	7 – 15 Vdc in (Power-over-Ethernet standard)			
Interfaces	Serial In\Out: RJ45 Load cell: 5 pin Dinkle connector	Loadcell - 5 pin M12 connector Serial Conn 8 pin M12 connector		
Dimensions	77 x 44.9 x 42 mm 3.03 x 1.76 x 1.65 in	129 x 80 x 26 mm 5.07 x 3.15 x 1.02 in		
Weight	60g 2.11 oz	440g 15.52 oz		
Mounting	DIN Rail mounting	Wall mounting		
Case Materials	Polyamide	Aluminum		
	on Software			
Resolution	Max 60,000 weight divisions			
Virtual Keys	Zero, Tare, Gross/Net			
Weight Status	Overload, Underload, Error, Motion, Centre-of-Zero, Zero Band			
Virtual LCD Interface	RINSTRUM R320 Emulation			
Virtual Setpoint	2			
Calibrations	mV/V Factory Calibration, Direct mV/V calibration commands, Test Weight calibration commands			

Specifications are subject to variation for improvement without notice - Illustrations are indications only and variation may be evident between products

2.2. Specification Table rinWIRE interface converter

	T105		
Power	12-24VDC in, 7.4 VDC out at 2A Reverse Polarity and short circuit protected		
Serial Interface	Convert Standard RS232 to Rs485		
Connectors	RS232 – DB9-F serial connector RS485 – RJ45 connector		
Operating Environment	Compensated: -10°C to +50°C		
Dimensions	77 x 44.9 x 42 mm 3.03 x 1.76 x 1.65 in		
Weight	60g 2.11 oz		
Mounting	DIN Rail mounting		
Case Materials	Polyamide		

Page 8 T000-600-200

3. Pin Diagrams

3.1. Digital Weight Transmitter T610

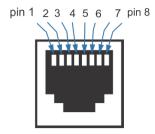


Figure 5 - RJ45 output
Female port
[Front]

Pin No	Description	
1	TXA	
2	TXB	
3	RXA	
4	V+	
5	V+	
6	RXB	
7	V-	
8	V-	

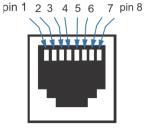


Figure 6 - RJ45 input Female port [Front]

Pin No	Description	
1	RXA	
2	RXB	
3	TXA	
4	V+	
5	V+	
6	TXB	
7	V-	
8	V-	

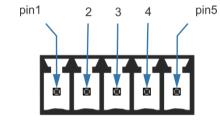


Figure 7 - loadcell Female connector [Front]

Pin No	Description	
1	AN-EX+	
2	AN-EX-	
3	AN-SIG+	
4	AN-SIG-	
5	SHIELD	

3.2. Digital Weight Transmitter T620

Figure 8 - M12 Analog Loadcell Male Socket

Pin No	Description		
1	AN-EX+		
2	AN-SIG+		
3	AN-EX-		
4	AN-SIG-		
5	SHIELD		

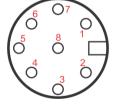


Figure 9 - M12 rinWIRE
Out Plug

Pin No	Description		
1	TXA		
2	TXB		
3	RXA		
4	V+		
5	V+		
6	RXB		
7	V-		
8	V-		

3.3. rinWIRE Interface Converter T105

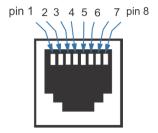


Figure 10 - RJ45 output Female port

Pin No	Description		
1	TXA		
2	TXB		
3	RXA		
4	V+		
5	V+		
6	RXB		
7	V-		
8	V-		

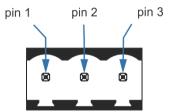


Figure 11 - DC input male socket

Pin No	Description	
1	V+	
2	V-	
3	GND	

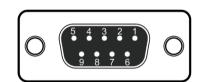


Figure 12 - DB9 (RS232) Female port

Pin No	Description	
1	NC	
2	RS232 TX	
3	RS232 RX	
4	NC	
5	RS232 GND	
6	RS232 TXB-	
7	RS232 TXA+	
8	RS232 RXB-	
9	RS232 RXA+	

Page 10 T000-600-200

4. rinWIRE communication Cabling System

4.1. T610 connections.

4.1.1. rinWIRE connector

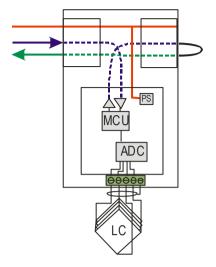


Figure 13 - rinWIRE Connector

4.1.2. Simple connection

T-series modules can be connected together to form a simple ring structure with the return path built into the cabling as follows:

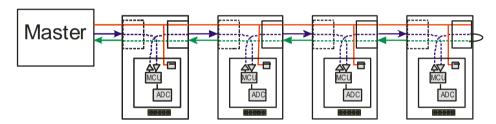


Figure 14 - simple rinWIRE network

Note that the loopback connection on the last connection in the chain.

4.2. T620 connections.

4.2.1. rinWIRE T-Junction

Network can also be split into a number of connection chains using the rinWIRE T-junction:

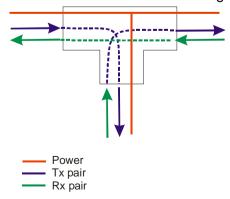


Figure 15 - rinWIRE T-Junction

4.2.2. Custom connection chains can be built using rinWIRE T-junction.

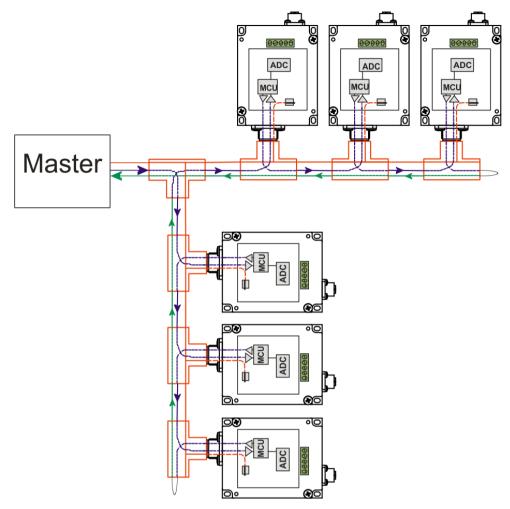


Figure 16 - Custom network of T620 using rinWIRE T-junction

Page 12 T000-600-200

5. Protocol Overview

The protocol uses ASCII characters with a single master POLL / RESPONSE message structure. All information and services are provided by registers each of which has its own register address.

5.1. Basic Message Format

The basic message format is as follows:

ADDR	CMD	REG	:	DATA
Header			Data	

5.1.1. ADDR

ADDR is a two character hexadecimal field corresponding with the following:

ADDR	Field Name	Description	
80н	Response	'0' for messages sent from the master (POLL).	
		'1' for messages received from a module (RESPONSE)	
40н	Error	Set to indicate that the data in this message is an error code and not a normal response.	
20н	Reply Required	Set by the master to indicate that a reply to this message is required by any slave that it is addressed to. If not set, the slave should silently perform the command.	
00н	Module	Valid addresses are 01 _H to 1F _H (1 31).	
 1Fн	Address	$00{\rm H}$ is the broadcast address. All sensors must process broadcast commands. When replying to broadcasts, sensors reply with their own address in this field.	

Note: The hexadecimal codes are combined in the fields described above when multiple options are active at the same time. For example, an error response message from sensor address 5 would have an ADDR code of C5_H ($80_H + 40_H + 05_H$).

5.1.2. CMD

CMD is a two character hexadecimal field:

CMD	Command	Description	
05н	Read Literal	Read register contents in a 'human readable' format	
11н	Read Final	Read register contents in a hexadecimal data format	
16н	Read Final (Decimal)	Same as Read Final except numbers are decimal.	
12н	Write Final	Write the DATA field to the register.	
17 _H	Write Final (Decimal)	Same as Write Final except numbers are decimal.	
10н	Execute	Execute function defined by the register using parameters supplied in the DATA field.	

5.1.3. REG

REG is a four character hexadecimal field:

REG	Register	Description
0004н	Software Version	Returns software version number
0005н	Serial Number	Returns sensor serial number
0010 _H	Save settings	Execute register to save all settings
001Fн	Save status	Execute register to save user zero and tare/PT values, gross/net status.
0020н	ADC Sample Number	Read current sample number since last power on. (32 bit)
0021н	System Status	This register can be read to obtain the status of the instrument. 32 status bits sent as 8 hex chars, where: 00020000 H: Overload 00010000 H: Underload 00008000 H: Error (see System Error) 00004000 H: SETUP menus active 00002000 H: Calibration in progress 00001000 H: Motion 00000800 H: Centre of Zero 00000400 H: Zero 00000200 H: Net 00000080 H: Setpoint 1 status 00000040 H: Setpoint 2 status
0022н	System Error	Diagnostic Errors
0023н	Absolute mV/V	Absolute mV/V reading where 10000 = 1.0mV/V
0025н	Displayed Weight	Gross or Net weight depending on which is active
0026н	Gross Weight	Gross weight
0027н	Net Weight	Net weight

Page 14 T000-600-200

0028н	Tare Weight	Tare weight
002Ен	Pre-set Tare Weight	pre-set Tare weight
014Ан	Auto Address	Execute register without <dc2> <dc4> framing to set the address based on ring network position.</dc4></dc2>

5.1.4. :DATA

:DATA carries the required information for the message

:	':' (COLON) character is used to separate the header (ADDR CMD REG) and DATA information.	
DATA	Carries the information for the message. Some messages require no DATA (eg Read Commands) so the field is optional.	

5.2. Termination

Message termination is possible in two ways.

1. ← : For normal communications use either a CRLF (ASCII 13, ASCII 10) as a terminator or a semicolon (';' ASCII). There is no start-of-message delimiter:

<Message> ←

2. To use framing the message is framed as:

STX < Message > ETX

STX	ASCII 02
	Message as above, CRLF or semicolon termination can be included but are not necessary.
ETX	ASCII 03

5.3. Error Handling

If a command cannot be processed, the sensor returns an error. The ERROR bit in the ADDR field is set and the DATA field contains the Error Code as follows:

Error	DATA	Description
Unknown Error	С000н	Error is of unknown type
Not Implemented Error	A000 _H	Feature not implemented on this device
Access Denied	9000н	Passcode required to access this register
Data Under Range	8800н	Data too low for this register
Data Over Range	8400 _H	Data too high for this register
Illegal Value	8200 _H	Data not compatible with this register
Illegal Operation	8100 _H	CMD field unknown
Bad parameter	8040н	Parameter not valid for this execute register
Menu in Use	8020н	Cannot modify register values while SETUP menus are active
Viewer Mode required	8010 _H	Advanced operation chosen which requires the sensor to be in viewer mode.
Checksum required	8008 _H	A checksum is required for the chosen command.

Page 16 T000-600-200

5.4. Overall Communication Framing

In the general case when more than one sensor is connected on a RING network it is necessary to frame the message using special framing characters <DC2> and <DC4>.

<DC2> and <DC4> are the characters ASCII 12_H and ASCII 14_H respectively, here called 'Echo-On' and 'Echo-Off'.

Upon receiving the <DC2> character the sensor begins echoing all received characters at the hardware level.

The <DC4> character halts the communications echo of incoming characters and provides an opportunity for the sensor to insert its response to the command. The sensor transmits any response it has and then appends a new <DC4> character.

The following example shows a complete POLL RESPONSE transaction for a network of two sensors. Note that the sensors adopt the message termination and framing of the POLL command. In this case framing is required but if the simple message termination of a CRLF was used instead the framing would not be used either by the Master or the sensors.

Sent from Master:

```
<DC2>
    STX <Read Weight> ETX
<DC4>
```

Received at master:

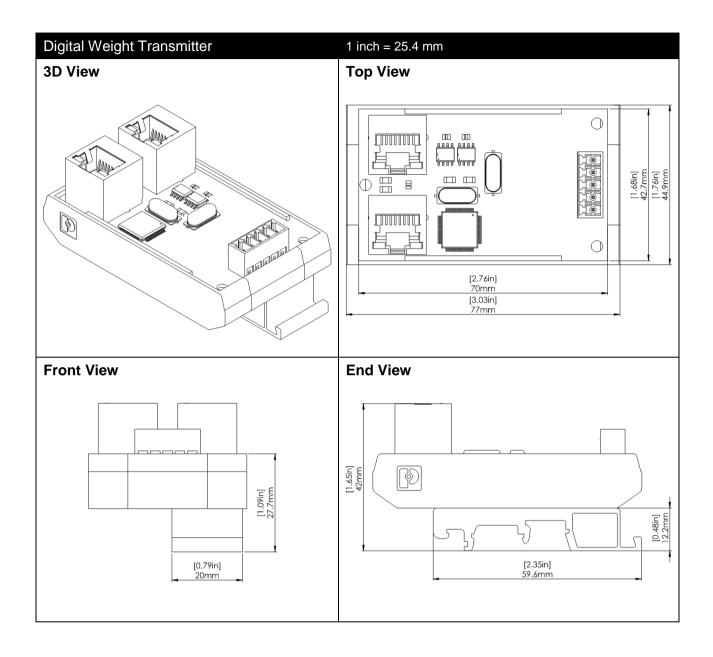
```
<DC2>
STX <Read Weight> ETX
STX <Sensor 1 Weight> ETX
STX <Sensor 2 Weight> ETX
<DC4>
```

Note that the Master receives its original poll command back along with the responses from all addressed sensors within the <DC2> <DC4> framing.

6. Appendix – Examples

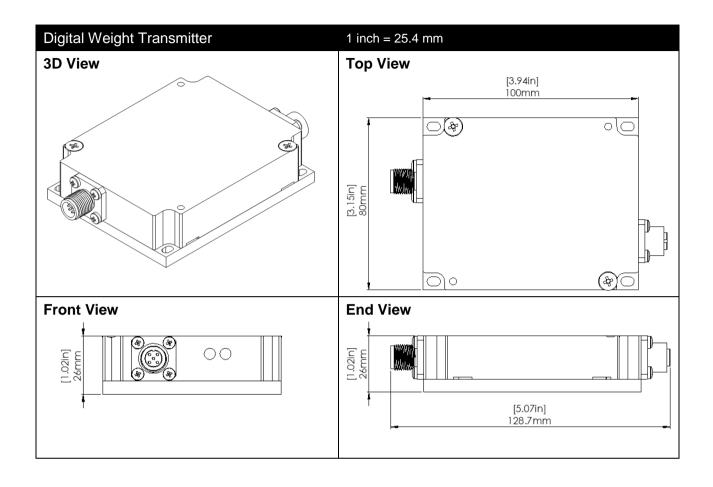
	Appendix Examples
	Description
Read Gross Weight	COMMAND:
(Read Final)	Read Gross Weight (Register 0026):
COMMAND:	ADDR = 21 _H : Reply required only from sensor 1
« 21110026:⊢ »	CMD = 11 _H : Read Final
	REG = 0026 _H : Gross Weight
RESPONSE:	RESPONSE:
« 21110026: -	Response is from instrument #1 which currently has a
81110026:00000064 - »	Gross weight of $64_{H} = 100 \text{ kg}$.
Read Gross Weight	
(Read Literal)	COMMAND:
· · ·	Read Gross Weight (Register 0026 н):
COMMAND:	ADDR = 21 _H : Reply required only from sensor 1
« 21050026:┵ »	CMD = 05 _H : Read Literal
RESPONSE:	REG = 0026 _H : Gross Weight
« 21050026:⊢	RESPONSE:
81050026: 100 kg G- »	Same response from instrument #1 but in literal format.
Read Gross Weight	
(Read Literal)	COMMAND:
	Read Gross Weight (Register 0026 H):
COMMAND:	ADDR = 20 _H : Reply required from all sensors
«20050026:┵ »	CMD = 05 _H : Read Literal
RESPONSE:	REG = 0026 _H : Gross Weight
« 20050026:⊷	RESPONSE:
81050026: 100 kg G⊷	Same response from instrument #1 but now instrument #2 answers with a weight of 125 kg as well.
82050026: 125 kg G← »	#2 answers with a weight of 125 kg as well.
Auto set Address	COMMAND:
(Execute)	
COMMAND:	Auto set address (Register 014A _H): ADDR = 20 _{H :} Reply required from all sensors
2010014A:1 ←	CMD = 10 _H : Execute
	REG = 014A _H : Auto set address
RESPONSE:	DATA = 1: start address
2010014A:3 -	RESPONSE:
	Same command but now the start address is 1 higher
	than the last instrument. In this case there are two
	instruments that have been assigned the addresses 1
	and 2 based on their position in the ring with respect to the master.
Sot Prosot Tare Weight	and madern
Set Preset Tare Weight (Write Decimal)	COMMAND:
·	Set Preset Tare Weight (Register 002E _H):
COMMAND:	ADDR = 21 _H : Write and Reply required only from
« 2117002E:20⊢ »	sensor 1
DECDONCE.	CMD = 17 _H : Write Decimal
RESPONSE:	

Page 18 T000-600-200

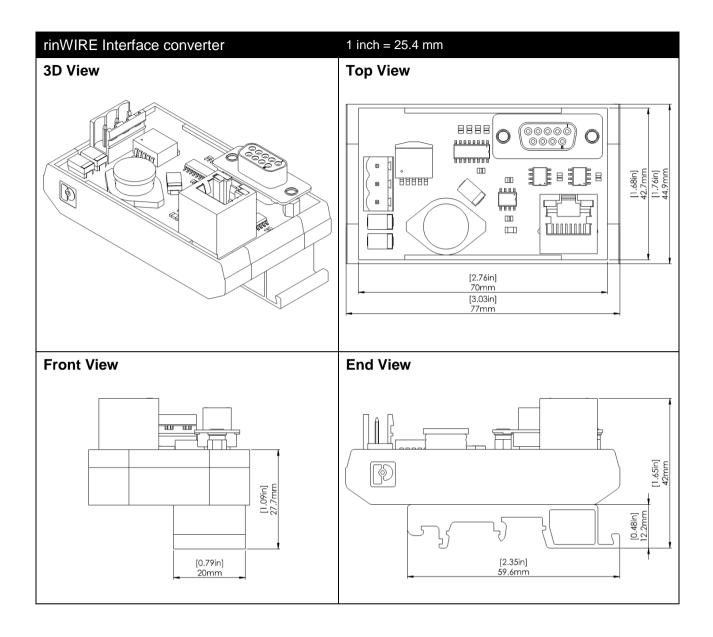

« 2117002E:20⊢	REG = 002E _H : Preset Tare Weight
8117002E:0000 - »	DATA = 20: 20 kg Preset Tare value
	RESPONSE:
	Instrument #1 writes the Preset Tare value and returns that there were no errors.
Save status	COMMAND:
(Execute)	Execute save status (Register 001F _H):
COMMAND:	ADDR = 20 _H : Execute and Reply required from all
«2010001F: ·· »	sensors
	CMD = 10 _H : Execute
RESPONSE:	REG = 001F _H : Save status
« 2010001F: ←	RESPONSE:
8110001F:0000 -	Instrument #1 and instrument #2 both save status and
8210001F:0000← »	reply that there were no errors.

where

```
« is <DC2>


   is message termination CRLF or `;'
» is <DC4>
```

7. Appendix - T610 Dimensions



Page 20 T000-600-200

8. Appendix – T620 Dimensions

9. Appendix - T105 Dimensions

Page 22 T000-600-200

10. Glossary Terms

Term	Definition
COMM	The communications protocol used to communicate with the R300 Series
Count-by	The smallest change in weight units that the display can show. See also Resolution.
Division	A single graduation.
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMC	Electro-Magnetic Compatibility Regulation
FIR	Finite Impulse Response
Full Scale	The maximum gross weight allowed on the scale. This is used to detect overload and underload conditions, etc.
Graduations	The maximum number of display steps between zero gross load and full capacity gross load. It is equal to the full scale divided by the resolution.
LED	Light Emitting Diode
NTEP	National Type Evaluation Program
OIML	International Organization of Legal Metrology
opto-LINK Cable	opto-isolated infrared communications link cable
PLC	Programmable Logic Controller
Range	Total change in weight between zero gross load and full capacity gross load (ie. the nominated total capacity of the scale). It is always given in displayed weight units.
Resolution	The smallest change in weight units that the display can show. See also Count-by.
RFI	Radio Frequency Interference
Ring Network	A network of up to 31 Instruments connected to a central computer
RS-232	Standard for communications hardware layers.
Step-Response	The step-response is the time between placing a weight on the scale and the correct weight reading being displayed.
Transients	A temporary voltage oscillation or spike caused by a sudden change of load (or other external influence).
Units	The actual units of measurement (kilograms, tonnes, pounds, etc.).

SMART WEIGHING SOLUTIONS

