
M4223 Operation Manual 1.00

 Page 1

M4223 Operation Manual 1.00

Page 2

1. Table of Contents

1. TABLE OF CONTENTS .. 2
2. M4223 ... 4

2.1. M4223 Features ... 4
2.1.1. Ethernet port .. 4
2.1.2. USB port .. 4
2.1.3. Embedded Linux .. 4
2.1.4. Web interface ... 4
2.1.5. Programmable indicators with Lua ... 4
2.1.6. Online and offline capabilities ... 4
2.1.7. Lua multiplexer ... 4

2.2. Logical Architecture .. 5
2.3. Physical Architecture .. 5
2.4. Connecting the M4223 ... 6
2.5. Verify the Connection ... 6
2.6. Remote Interface .. 6

2.6.1. Logging In to the Remote Interface .. 6
2.6.2. Mounting a USB ... 7

2.7. Web Interface ... 7
2.7.1. Web Interface Features .. 7
2.7.2. Logging in to the Web Interface .. 7
2.7.3. Upgrading Firmware ... 7

3. LUA ... 8
3.1. Features ... 8
3.2. Introduction to Lua ... 8
3.3. Function Arguments and Returns ... 9
3.4. Standard Libraries .. 10
3.5. Advanced Concepts ... 10

3.5.1. Tables .. 10
3.5.2. Modules ... 11
3.5.3. Coroutines .. 12

4. LUA API .. 13
4.1. Introduction .. 13
4.2. myApp .. 13
4.3. rinApp .. 13

4.3.1. Streaming ... 14
4.3.2. Status Change Events .. 14
4.3.3. Keyboard Events .. 15
4.3.4. User Dialogue .. 15
4.3.5. Setpoint Support... 16
4.3.6. Analogue I/O Control .. 16
4.3.7. Serial Ports ... 17
4.3.8. LCD Control ... 17

5. LUA LIBRARIES ... 19
5.1. LuaBitOp 1.02 .. 19
5.2. LuaSocket 2.0.2 ... 19
5.3. LuaLogging 1.2.0 ... 19
5.4. LuaPosix 5.1.23 ... 19
5.5. LuaFileSystem 1.6.2... 19
5.6. Penlight 1.0.2 ... 19
5.7. LDoc 1.2.0 .. 20
5.8. LuaSQL 2.1.1 ... 20

6. RINSTRUM LUA LIBRARIES ... 21
6.1. rinDebug .. 21

6.1.1. rinCMD Network Protocol ... 21
6.1.2. Register Access ... 23

6.2. K400 .. 23
6.3. rinSystem ... 24

M4223 Operation Manual 1.00

 Page 3

6.3.1. Sockets .. 24
6.3.2. Timers .. 24

6.4. rinRIS ... 24
6.5. rinCSV.. 24
6.6. rinINI .. 25
6.7. Updates .. 25

7. EXAMPLE APPLICATIONS .. 26
7.1. Single-Device Control ... 26
7.2. Basic Functionality ... 27
7.3. Advanced Functionality .. 28
7.4. Multiple-Device Control .. 29

8. RINSTRUM PACKAGES .. 30
8.1. Luamux – L001.5xx.502 ... 30
8.2. Time Sync – L001.5xx.504 ... 30
8.3. Automatic Script Starting – L001.5xx.505 ... 30

9. DEVELOPER ENVIRONMENT ... 31
9.1. Environment Setup ... 31

9.1.1. Windows .. 31
9.1.2. Windows (Eclipse) .. 33
9.1.3. Linux .. 33

9.2. Library Usage ... 34
9.2.1. PC .. 34
9.2.2. Module ... 34

M4223 Operation Manual 1.00

Page 4

2. M4223
2.1. M4223 Features

2.1.1. Ethernet port
Allows for remote connections to the module.

2.1.2. USB port
Allows for compatible USB devices to be attached to the module.
Only USB storage devices with an NTFS file system are compatible.

2.1.3. Embedded Linux
The module runs on embedded Linux operating system which provides a familiar
interface for users. This system does not include a local compiler.

2.1.4. Web interface
The module includes a web interface that allows for firmware to be easily upgraded.
This is covered in detail in 2.7 Web Interface.

2.1.5. Programmable indicators with Lua
The M4223 comes with Lua 5.1.5, a powerful lightweight scripting language, and
supporting libraries that simplify the process of writing scripts to control the R400
and interface with the operator.
This feature vastly increases the capabilities of the R400 and allows it to be
customised extensively to perform specific tasks.
This is covered in deal in 6. Rinstrum Lua Libraries.

2.1.6. Online and offline capabilities
The M4223 is designed for networking capability, but can also be used offline for
purposes where user control is necessary, but it is not feasible to connect to a
network.

2.1.7. Lua multiplexer
The M4223 uses a LUA multiplexer to allow for multiple connections (via a user
application or View400) to a single R400 device, giving users the ability to set up
multiple connections to local LUA scripts as well as remote control applications.

M4223 Operation Manual 1.00

 Page 5

2.2. Logical Architecture

Figure 1: Logical Architecture with Framework (rinLib and rinSystem)

2.3. Physical Architecture

Figure 2: Physical Architecture

M4223 Operation Manual 1.00

Page 6

2.4. Connecting the M4223
1. Plug the M4223 into the back R400 and tighten the screws to secure the

module.
2. Plug an Ethernet cable into the M4223.
3. Restart the R400

2.5. Verify the Connection
1. Bring up the modules menu by holding the 0 key
2. Use the arrow keys to navigate until TYPE displays M4223
3. Press the +/- key until STATUS is shown (should be OK)

If the STATUS displayed is ETH.ERR this indicates the M4223 is not talking
to the R400 properly. Check that the M4223 is correctly plugged into the
back of the device, turn the device off, wait 10 seconds, and then turn it back
on.

4. Press +/- once more so the IP is displayed (referred to as <IP> from here)
If the IP does not change from 0.0.0.0 within at least a minute after start-up,
this indicates the module has not got an IP address. This may be because
the Ethernet cable is not plugged in properly, or the network is not configured
properly.

2.6. Remote Interface

2.6.1. Logging In to the Remote Interface
1. Open a connection to the module

a. Windows
i. Download and open PuTTY
ii. Select 'Telnet'
iii. Enter <IP>, leave port as 23
iv. Press 'Open'

b. Linux
i. Open a terminal
ii. Type:

telnet <IP>
2. Enter the username and password

a. Default username/password: root/root

M4223 Operation Manual 1.00

 Page 7

2.6.2. Mounting a USB
This allows for mounting an NTFS formatted USB storage disk.

From a remote interface type:

blkid
This will list the connected drives in the format of:

<partition>: UUID="<ID>" TYPE="<FILETYPE>"
One entry should have TYPE="ntfs" (and will typically be at /dev/sda1).

To mount the drive to the filesystem:
mkdir /mnt/usb
mount -t ntfs-3g <partition> /mnt/usb

2.7. Web Interface

2.7.1. Web Interface Features
• Display syslog

This displays the kernel and application messages for user debugging.

• Change web interface password

• Reboot device

• List installed packages
Lists the firmware packages that have been installed on the device, and
allows users to remove them.

• Install new packages
Allows users to install new firmware provided by Rinstrum

2.7.2. Logging in to the Web Interface
• Get the IP of the M4223 using 2.6.1 Logging In to the Remote Interface.

• Type this into a web browser

• A prompt should appear asking for a username and password
o The default is admin/password

2.7.3. Upgrading Firmware
• Press 'Installed Packages'

• Check if the firmware you are trying to install already exists
o If the firmware you are trying to install is already there, uninstall it

• Press 'Firmware Upload'

• Press the 'Choose File' button and navigate to the firmware you wish to install
(should be an .rpk file)

• Press the 'Upload' button

M4223 Operation Manual 1.00

Page 8

3. Lua
3.1. Features

Lua is designed to be a fast, lightweight scripting language that is powerful enough
to be used for complex projects but simple and flexible enough for new users to
quickly overcome the learning curve and start writing effective scripts.
As such, the language features a minimum number of built-in libraries but has large
support for user-written libraries.
Further reading: http://www.lua.org/about.html

3.2. Introduction to Lua
This is only intended to be a brief overview to Lua, and showcase the basic
functionality. For more in-depth guides there are tutorials available online at
http://lua-users.org/wiki/TutorialDirectory, and a reference manual is available online at
http://www.lua.org/pil/contents.html.

Introductory Example

-- Variable scope
globalVar = "Hello " -- Global variable
local temp = "World" -- Local variable

-- Data types
varNum = 123 -- Number
varString = "456" -- String
varBoolean = true -- Boolean

-- Printing
print(varNum, varString, varBoolean) -- 123 456 true

-- String handling
newString = globalVar .. temp -- Concatenate to "Hello World"
newString = varNum .. varString -- Concatenate to "123456"

-- Simple if/else statement
if (varNum > 5) then
 print("Greater than 5")
else
 print("Less than or equal to 5")
end

-- While loop
local i = 0
while i < 5 do -- Print 0 to 4 on new lines
 print(i)
 i = i + 1
end

-- For loop
for i = 0,10,2 do -- Start at 0, end at 10, increase i by 2
 print(i) -- on each interation
end

-- Function that will return double the number
function multi(x)
 local y = 2*x -- y is local to this function
 return y -- and cannot be accessed outside of it
end

http://www.lua.org/about.html
http://lua-users.org/wiki/TutorialDirectory
http://www.lua.org/pil/contents.html

M4223 Operation Manual 1.00

 Page 9

3.3. Function Arguments and Returns
Lua has simple ways of handling overflow of para

Function Arguments and Returns Example

function sum1(a, b, c)
 return a+b+c
end

print(sum1(1,2,3)) -- 6

--print(sum1(1,2)) -- Lua fills unused parameters with nils
 -- This will error, as 1+2+nil does not add

print(sum1(1,2,3,4)) -- 6 (The extra argument is discarded)

-- The function has be improved by using default argument
-- This works by using short circuit evaluation of the 'or' operator
function sum2(a, b, c)
 a = a or 0 -- if a is non-nil, 'or 0' will not evaluate
 b = b or 0 -- if b is nil, the 'or 0' will evaluate and give b = 0
 c = c or 0

 return a+b+c
end

print(sum2(1,2,3)) -- 6

print(sum2(1,2)) -- 3

--print(sum2('a', 2)) -- This will error, as 'a' cannot be added

-- The function can be made robust by checking values given to it are numbers
function sum3(a, b, c)
 a = a or 0 -- if a is non-nil, 'or 0' will not evaluate
 b = b or 0 -- if b is nil, the 'or 0' will evaluate and give b = 0
 c = c or 0

 if (type(a) ~= 'number' or
 type(b) ~= 'number' or
 type(c) ~= 'number') then
 return nil, "non-numeric argument"
 end

 return a+b+c
end

print(sum3(1,2,3)) -- 6

print(sum3(1,2)) -- 3

print(sum3('a', 2)) -- This will print nil and an error message
 -- but will not crash lua.

-- To read values out of the functions, variables can be comma separated
-- This can be used to see if the function has returned an error
val, err = sum3(1, 2)
print(val, err) -- 3, nil

val, err = sum3('a', 2)
print(val, err) -- nil, "non-numeric argument"

M4223 Operation Manual 1.00

Page 10

3.4. Standard Libraries
Lua comes with a minimum number of standard libraries included.
These include the fairly standard core, math, string, OS, and IO libraries, and the
more advanced table, and coroutines libraries.

3.5. Advanced Concepts

3.5.1. Tables
A table in Lua is an associative array that maps a key to a value.
Tables are very simple to create, and can easily be used to store and retrieve data.

Table Example

t = {} -- Initialise the table
t["foo"] = 3 -- Set the value of "foo" to 3
print("foo: " .. t["foo"]) -- foo: 3

t.foo = 5 -- This is equivalent to t["foo"] = 5
print("foo: " .. t["foo"]) -- foo: 5
print("foo: " .. t.foo) -- This is the same as the previous line

--t.5 = 1 -- This line is not allowed, and will error
t["5"] = 1 -- This works though
print("foo: " .. t["5"])

table.insert(t, 7) -- Insert a value by explicitly using table

for key,value in pairs(t) do -- This will print the values in no particular
 print(key,value) -- order. Unordered storage is a property of
end -- storing data as a table.

t.foo = nil -- This will remove "foo" from the table

t.innerTab = {} -- Tables can also contain other tables, which
 -- can be accessed and traversed as above.
t.innerTab["foo"] = "abc"
t.innerTab.bar = "def"

-- A typical use might be to setup a config data table
local config = {
 var1 = 5, -- global settings
 var2 = 'Test',
 general = { name = 'Fred'}, -- [general] group settings
 comms = {baud = '9600',
 bits = 8,
 parity = 'N',
 stop = 1}, -- [comms] group settings
 batching = {target = 1000,
 freefall = 10} -- [batching] group settings
 }

M4223 Operation Manual 1.00

 Page 11

Tables as Arrays

t = {"a", "b", "c", "d", "e"} -- Initialise the array with 5 elements
 -- This is equivalent to:
 -- t = {}
 -- t[1] = "a"
 -- t[2] = "b"
 -- etc.

print (#table) -- Length of the table (5)

t[1] = nil -- Remove element "a"
t[2] = nil -- Remove element "b"

print(#table) -- 'Length' of the table (0). Isolated elements
 -- are not counted.

table.insert(t, "f") -- Add a new element to the end of array (6, f)

for key,value in pairs(t) do -- Print the array, not necessarily in order
 print(key,value)
end

t[1] = "a"
t[2] = "b"

for key,value in pairs(t) do -- Print the array, will be in order as keys are
 print(key,value) -- consecutive
end

3.5.2. Modules
Tables are also the basis for modules in Lua, and are used to return a collection of
module variables and functions.

samplemodule.lua

local _M = {}

_M.moduleVar = 5

function _M.double(num)
 return 2*num
end

return _M

This module can then be required by other Lua scripts, and the module variables
can be read and modified.

Calling Sample Module

local sample = require "samplemodule"

print(sample.double(5)) -- 10
print(sample.moduleVar) -- 5

M4223 Operation Manual 1.00

Page 12

3.5.3. Coroutines
Coroutines in Lua allow for cooperative multi-threading. This is different to pre-
emptive multithreading traditionally used in computing as it requires the thread that
currently has control to yield rather than have control taken from it. This approach is
faster and requires much less overhead than using multithreading.

For most applications coroutines are not necessary, but they can be extremely
useful for tasks that require processing a large amount of data while concurrently
handling events.

A typical use for coroutines is IO dispatching, where each connection has its own
coroutine and a dispatcher resumes the coroutines when data comes in on the
connection.

M4223 Operation Manual 1.00

 Page 13

4. Lua API
4.1. Introduction

Comprehensive details of how to use the Lua API are contained in programmers
documentation automatically generated from structured comments in the libraries
themselves using a utility available onboard the M4223 called ldoc.

All functions in the API and are covered by the GNU GPL
(http://www.gnu.org/licenses/gpl.html).
The LUA API libraries are structured in layers and designed so that most
applications can be coded using the high level functions. These high level functions
are explored in this chapter with details of the lower layers explored in subsequent
chapters.

4.2. myApp
myApp is an application template that contains all the boilerplate configuration setup
for the most common types of applications.
myApp uses the rinAPP framework.
To start a new project, copy myApp.lua into your project directory, rename to your
project name and add in the details of your application.

4.3. rinApp
rinApp creates all the application framework. It loads in the lower level libraries
required to implement timers and communications sockets so that you do not need
to do that explicitly in your application.

rinApp.addK400()
addK400 is called to establish the connection to the R400 instrument. When
called addK400 loads in all and configures all the libraries needed to control
that instrument.
If the connection is to a remote instrument then specify the IP address of that
instrument. Otherwise the default operation of the function is to establish
connection with the local host instrument using a local linux socket.
rinApp.running is a global flag maintained by rinApp which is true while the
application is running and is set false in the event that the application has
been instructed to exit.
rinApp.cleanup()
A function that should be called at the end of your application that releases
the R400 instrument from the control of your application, frees up the
communications sockets and generally tidies up for a clean exit.

Debug:
rinApp loads and configures a copy of the rinDebug library with the debug
level set by a command line parameter passed into the application.

Eg lua myApp.lua info
runs the myApp script with debug configured to show INFO
messages.

http://www.gnu.org/licenses/gpl.html

M4223 Operation Manual 1.00

Page 14

Terminal Commands:
rinApp establishes a dedicated posix connection for the application that
allows for interaction with the running application using the ssh/telnet
terminal. To use this type in the commands and press enter directly from the
terminal as follows:

exit sets the running flag false
DEBUG, INFO, WARN, ERROR, FATAL set the debug level to
determine what types of messages are logged.

4.3.1. Streaming
Streams allow for the contents of up to 5 registers to be transferred to the LUA
engine in the one transaction. The stream can be configured to update at 1Hz, 3Hz
and 10Hz, or on change.
addStream()
Add a register to the stream set and setup a callback function to process the data.
The callback function can be configured to be called whenever data is received or
only when the received data is different from previous update.
removeStream()
Remove a register from the stream set.
setStreamFreq()
Call to set the frequency of the stream update. By default the frequency is set to
update on change.

4.3.2. Status Change Events
By default, rinApp adds the instrument status register to the stream list and so
configures the K400 library to monitor changes in instrument status.
The following functions allow you to modify which status bits are monitored and
register callback functions to respond to status changes.
setStatusCallback()
Register a function to be called on the change of a particular status bit. Callback
function gets given the status bit and the current state.
setRTCStatus()
By default changes in the real time clock are not monitored in the status bits.
setRTCStatus allows you to enable or disable change in RTC monitoring. When
enabled the status stream will contain a bit every time the instrument Real Time
clock updates each second.
setRDGStatus()
Use this routine to configure a status bit that changes every time a set number of
weight readings have been made.
setIOStatus()
Use this routine to configure a status bit that alerts the application if any of a defined
subset of the 32 IO points has changed.

M4223 Operation Manual 1.00

 Page 15

4.3.3. Keyboard Events
By default, rinApp adds the instrument keyboard register to the stream list and
configures the instrument to send all keyboard events to the LUA engine before
processing. This allows the LUA application to define the behaviour of any key in
the instrument. Keys events that are not processed in the LUA application are sent
back to the instrument to invoke the default actions.
The following functions enable your application to respond directly to operator key
presses:
Callback functions can be linked to a single key or to groups of keys (eg all function
keys or all number keys).
Keyboard event handling is a special implementation of stream handling, and allows
for key presses to be streamed up to the M4223 so that custom actions can be
made via callbacks using setKeyCallback. If there is no callback associated with
a key, or the callback does not return true, then the key is passed back to the R400
to be handled normally.
As well as being supporting callbacks associated with a single key, the DWI library
supports associating callbacks with key groups using setKeyGroupCallback.
The fixed key groups (in order of priority), are cursor, numpad, keypad,
functions, primary, and all. If callbacks for multiple, overlapping key groups
are set, the callbacks will be called in order of priority until one of them returns true.

There are three types of key events: short, long, and up. A normal key press
results in short and up key events while long and up events are triggered when the
key is held down for 2 seconds or more.

4.3.4. User Dialogue
The following library services are provided for regular user interface tasks. These
are modal processes focused on the user that do not return to the main application
until the user responds but keep all the non-user background activities running.

GetKey() Waits for a key from a particular key group to be pressed.
edit() Prompt user to enter data of a particular type and press OK
delay() Delay for a specified number for millisecs but keep background activities

running while you wait.
askOK() Prompt user to press OK or CANCEL
selectOption Prompt user to select from a list of options

M4223 Operation Manual 1.00

Page 16

4.3.5. Setpoint Support
The R400 supports up to 32 I/O control points that can be configured as outputs.
It is possible to directly control individual outputs from within your LUA
application. Alternatively there are functions to setup the realtime setpoint
functions built into the instrument firmware.

Direct Control

enableOutput(), releaseOutput() Set or release a particular IO for direct
LUA control
turnOn(), turnoff() Turn on or off a particular IO point that has been
configured for LUA control by enableOutput()
turnOnTimed() As with turnOn() but takes a parameter to determine how
long the output is to remain on before turning off.

RealTime Control

setNumSetp() Set the number of realtime setpoints
setpName() set the name of the setpoint
setpIO() set the physical IO point controlled by the setpoint
setpType(), setpSource(), setpLogic(), setpAlarm(), setpHys(),
setpTarget() set the setp control parameters

For a complete description of the functionality of the built in setpoint features
refer to the Reference Manual for the particular R420 firmware.

4.3.6. Analogue I/O Control
The M4401 provides analogue output either 4-20mA or 0..10 V.
It is possible to control the analogue output values directly from LUA as follows:

setAnalogSrc() Set this to COMMS to enable local LUA control
setAnalogType() Voltage or Current
setAnalogClip() controls whether output is clipped to nominal limits or allowed to
exceed these.
setAnalogVal() 0.0 .. 1.0 corresponds to analogue output range
setAnalogPC() 0 .. 100%
setAnalogVolt() 0 .. 10.0V
setAnalogCur() 4.0 .. 20.0 mA

M4223 Operation Manual 1.00

 Page 17

4.3.7. Serial Ports
The R420 supports up to 2 serial ports each with a bidirectional and a transmit
only port. These are designated as 1A,1B, 2A, 2B with 'A' ports being
bidirectional.
printCustomTransmit Instruct R420 to expand the token string supplied and
transmit out the designated serial port. See the R420 Reference Manual for a full
list of print tokens.
reqCustomTransmit Instruct R420 to expand the token string supplied and
return.
In addition it is possible to configure the R420 to buffer incoming serial traffic. A
status bit is available in the system status register to indicate that serial data is
available. Read the associated buffer register to collect the serial data.
Write to the serial buffer register to send serial data out the R420 ports.
It is also possible to use the USB port to manage USB serial ports directly from
Lua.

4.3.8. LCD Control
To control the LCD display directly the display mode needs to be set to TOP.
The instrument LCD is divided into 4 areas that will display whatever text is written
to them:

writeTopLeft(), writeTopRight(),

writeBotLeft() writeBotRight()

M4223 Operation Manual 1.00

Page 18

In addition to the main data areas there are also two separate units groups and two
annunciator groups.
setBitsTopAnnuns()
clrBitsTopAnnuns() writeTopUnits()

setBitsBotAnnuns()
clrBitsBotAnnuns()

writeBotUnits()

Automatic Updates
Alternatively these areas can be set to display particular register data automatically.
setAutoTopAnnun(), setAutoTopLeft(), setAutoTopRight(),
setAutoTopUnits(), setAutoBotUnits(),
are used to link a particular register address with a particular display area.

M4223 Operation Manual 1.00

 Page 19

5. Lua Libraries

The M4223 comes with a variety of Lua libraries that have already been configured
for the device.

5.1. LuaBitOp 1.02
Provides bitwise operations to Lua scripts such as 'or', 'not', 'and', 'xor', etc.

Further reading: http://bitop.luajit.org/

5.2. LuaSocket 2.0.2
Provides a socket interface so that Lua scripts can connect to other machines.
Supports TCP, UDP and Unix sockets, as well as providing special support for
HTTP, FTP and SMTP connections.

Further reading: http://w3.impa.br/~diego/software/luasocket/

5.3. LuaLogging 1.2.0
Provides an API to structured, levelled logging of data. Data can be logged at a
DEBUG, INFO, WARNING, ERROR or FATAL level, and the output can be
configured to filter output below a set level.
This filtered output can be displayed to console, file system, email, socket and SQL.

Further reading: http://www.keplerproject.org/lualogging/

5.4. LuaPosix 5.1.23
Provides a POSIX binding (including curses) to C API's.

Further reading: https://github.com/luaposix/luaposix

5.5. LuaFileSystem 1.6.2
Provides a method for interacting with the underlying directory structure and file
attributes of the file system.

Further reading: http://keplerproject.github.io/luafilesystem/

5.6. Penlight 1.0.2
Provides alternate data types and functionality for Lua.

Further reading: http://stevedonovan.github.io/Penlight

http://bitop.luajit.org/
http://w3.impa.br/~diego/software/luasocket/
http://www.keplerproject.org/lualogging/
https://github.com/luaposix/luaposix
http://keplerproject.github.io/luafilesystem/
http://stevedonovan.github.io/Penlight

M4223 Operation Manual 1.00

Page 20

5.7. LDoc 1.2.0
Provides HTML documentation based on commented code.
Can be called on the device using 'ldoc' command, and can be used for generating
the code documentation (e.g. ldoc –d src)

Further reading: https://github.com/stevedonovan/LDoc

5.8. LuaSQL 2.1.1
Provides access to databases using SQL interfaces.
Currently only supports MySQL, but will be upgraded in the future to allow for
MSSQL connections over ODBC.

Further reading: http://www.keplerproject.org/luasql/

https://github.com/stevedonovan/LDoc
http://www.keplerproject.org/luasql/

M4223 Operation Manual 1.00

 Page 21

6. Rinstrum Lua Libraries

6.1. rinDebug
This module wraps around LuaLogging and provides a clean way of serialising and
printing variables and tables. Variables are converted to strings, and tables are
recursively expanded to show all the data they contain before they are logged.
A copy of rinDebug is automatically loaded and configured by rinApp with the debug
level set by the command line parameter.
Data can be logged with an identifier, which can be used to easily find the logged
data in the log file, and a level (DEBUG, INFO, WARN, ERROR, FATAL) which can
be used to control the verbosity of the debugging.
The debugger will output all messages which are greater than or equal to the level
the debugger is started with. For example, if the debugger is started at INFO level
(the default), INFO, WARN, ERROR and FATAL log messages will be displayed but
DEBUG level messages will not be.
Data can be logged to a variety of locations such as console, a file or an SQL
database depending on the settings. The method for doing this can be found in the
LuaLogging documentation.
The logger type can be changed in the rinDebug file, and the level can be set by
calling rinDebug.configureDebug.

printVar(name, v, level)
This is the main debug function called with an optional name to be logged
along with the contents of variable v at a particular debug level.

6.1.1. rinCMD Network Protocol
The entire programmability of the R400 instrumentation is built on the foundation of
the rinCMD protocol interface which provides various functions for a comprehensive
list of register settings.
Following is a brief overview of the protocol that the various libraries use to
construct the programming interface.
The network protocol uses ASCII characters with a single master POLL /
RESPONSE message structure. All information and services are provided by
registers each of which has its own register address.
The basic message format is as follows:

ADDR CMD REG :DATA 8

By convention the LUA libraries assume that there is only one instrument connected
to any given socket so all commands are sent out with the broadcast address.

ADDR

M4223 Operation Manual 1.00

Page 22

ADDR is a two character hexadecimal field corresponding with the following:

ADDR Field Name Description
80H ADDR_RESP ‘0’ for messages sent from the master (POLL).

‘1’ for messages received at the master (RESPONSE)
40H ADDR_ERR Set to indicate that the data in this message is an error

code and not a normal response.

20H ADDR_REPLY Set by the master to indicate that a reply to this
message is required by any slave that it is addressed
to. If not set, the instrumet should silently perform the
command.

00H

..
1FH

Indicator
Address

Valid instrument addresses are 01 H to 1F H (1 .. 31).
00 H is the broadcast address. All slaves must process
broadcast commands. When replying to broadcasts,
slaves reply with their own address in this field.

 CMD is a two character hexadecimal field:

CMD Command Description
05H CMD_RDLIT Read register contents in a ‘human readable’

format

11H CMD_RDFINALHEX Read register contents in a hexadecimal data
format

16H CMD_RDFINALDEC Same as Read Final except numbers are
decimal.

12H CMD_WRFINALHEX Write the DATA field to the register.

17H CMD_WRFINALDEC Same as Write Final except numbers are decimal.

10H CMD_EX Execute function defined by the register. Uses
parameters supplied in the DATA field.

REG

is a four character hexadecimal field that defines the address of the
Register specified in the message.

: DATA

carries the information for the message. Some messages require no
DATA (eg Read Commands) so the field is optional. When a DATA
field is used a ‘:’ (COLON) character is used to separate the header
(ADDR CMD REG) and DATA information.

8 is the message termination (CR LF or “;”).

M4223 Operation Manual 1.00

 Page 23

6.1.2. Register Access
At the lowest level it is possible to directly manipulate the R400 instrument using
rinCMD commands. There are a number of functions provided to make this
convenient. The source code for these is contained in the rinCon.lua file.
All of the common register addresses are already declared in the library so you can
use names like REG_GROSS in your code rather than the actual constant vale of
0x0026 (40 decimal). This makes your code more readable and easier to maintain.
If you need to use a register that is not already declared in the library it is a simple
matter of looking up the R400 reference manual appendix or using the Viewer
software or .RIS files to determine the address which can then be declared in your
own application.

send(cmd,reg,) is useful for sending a message to a connected device,
and takes arguments for the command, register and data. The default
behaviour is
preConfigureMsg() is useful for wrapping up the send function and the
arguments into a single function that can be called easily .

To receive data, rinCon.bindRegister provides a way of binding the register on
a received message to a callback function. This means that whenever the device
sends up a message associated with a bound register, the bound function is called
with the data as an argument. rinCon.unbindRegister removes a registers
bound callback function.

6.2. K400
This module builds on top of rinCMD and provides all of the instrument services
exported by rinAPP.
This includes data streaming (on change or at a set frequency), key interception
(allowing the program to take control of the R400's inputs), status monitoring, LCD
control, analogue I/O control, and set point control, and is designed to operate as
part of rinSystem.

M4223 Operation Manual 1.00

Page 24

6.3. rinSystem
This module provides socket handling and framework for user applications. Sockets
(which are compatible with LuaSocket) and a corresponding callback function can
be registered with the framework, and when data is received on a socket the
callback function will be run. Timers with corresponding callback functions can also
be added, and can be set to be repeating or single use.

The program flow is single threaded, which means that any event handling should
not take a significant amount of time or other items in the system will be delayed.
rinAPP loads and configures rinSystem linking the sockets and timer services with
K400 instrument services to create the application framework.

6.3.1. Sockets
rinSystem allows for LuaSocket-compatible sockets to be registered with the
framework (using System.sockets.addSocket) along with a callback function
that will run when the socket receives data.
To support terminal I/O as well as network sockets, the IOSocket Library provides
LuaSocket-compatible socket for standard I/O that can be registered with the
framework (using System.IOsockets.makeSocket).

6.3.2. Timers
The timer module allows for a callback to be run at certain intervals when added
with System.timers.addTimer. These are only approximate timers though, and
are suited for timing operator interfaces and broad process timing. These timers are
not suited to real-time applications, and have an accuracy of approximately 10ms,
but accuracy is not guaranteed.

6.4. rinRIS
This module can read a RIS file (which contains Rinstrum instrument settings) and
send the configuration to the R400. This is useful for quickly and easily configuring
the device for different scripts.
RIS files are created by the view400 and save400 utilities and are a convenient way
to establish the default operating parameters for an application.

6.5. rinCSV
This module offers functions for creating a multi-table database stored and recalled
in CSV format.
There is a separate .CSV file created for each table.

M4223 Operation Manual 1.00

 Page 25

6.6. rinINI
This module provides services for saving and restoring table settings in a table to
.INI configuration files.

6.7. Updates
As well as being provided with the release, the Lua Library has been released on
Github. Github is a collaborative code sharing website that hosts source code that is
version controlled with Git.
Github will always have the latest version of the library, and will have a history of all
stable releases made by Rinstrum.
The libraries are available at https://github.com/rinstrum/LUA-LIB.

 For more information on Git: http://git-scm.com/

https://github.com/rinstrum/LUA-LIB
http://git-scm.com/

M4223 Operation Manual 1.00

Page 26

7. Example Applications
7.1. Single-Device Control

The hello application outlines how rinApp can be used to write a simple script.

hello.lua

-- Hello
--
-- Traditional Hello World example
--
-- Configures a rinApp application, displays 'Hello World' on screen and waits
-- for a key press before exit

-- Require the rinApp module
local rinApp = require "rinApp"

-- Add control of an DWI at the given IP and port
local DWI = rinApp.addK400("K401")

-- Write "Hello world" to the LCD screen.
DWI.writeBotLeft("Hello")
DWI.writeBotRight("World")

-- Wait for the user to press a key on the DWI
DWI.getKey()

-- Clean-up the application and exit
rinApp.cleanup()
os.exit()

M4223 Operation Manual 1.00

 Page 27

7.2. Basic Functionality
The testDialog application demonstrates how to display data to the R400 and get
user input.

testDialog.lua

-- testDialog
--
-- Example of how to use various library dialog functions

local rinApp = require "rinApp"
local DWI = rinApp.addK400("K401")

-- Put a message on LCD and remove after 2 second delay
DWI.writeBotLeft("DIALOG")
DWI.writeBotRight("TEST")
DWI.delay(2000)
DWI.writeBotLeft("")
DWI.writeBotRight("")

-- Prompt user to enter the number of times to sound buzzer, validate,
-- and then buzz after 0.5 second delay
local val = DWI.edit('BUZZ',2)
if DWI.askOK('OK?',val) == DWI.KEY_OK then -- confirm buzz amount
 DWI.delay(500)
 DWI.buzz(val)
end

-- Prompt user to select from a list of options. Options list will loop.
-- (e.g. if user presses 'up' key when option is large, loop back to small.
local sel = DWI.selectOption('SELECT',{'SMALL','MEDIUM','LARGE'},'SMALL',true)
DWI.delay(10)
-- show selected option (on device and console) and wait until key pressed
DWI.writeBotLeft(sel)
DWI.writeBotRight('SELECTED')
rinApp.dbg.printVar('Selected value', sel, rinApp.dbg.INFO)
DWI.getKey()

rinApp.cleanup() -- shutdown application resources
os.exit()

M4223 Operation Manual 1.00

Page 28

7.3. Advanced Functionality
The marquee application shows a more complex application that uses a timer to
slide the user's text across the screen. A suggestion for improving that will help the
understanding timers has been included.

marquee.lua

-- Marquee
--
-- Allows for marquee messages to be displayed across the screen
--
-- POSSIBLE EXERCISE:
-- Write a keyboard callback that allows dynamic editing of the scrolling speed
-- when the up and down keys are pressed
--
-- Hint: you will have to stop and start the slide timer

local rinApp = require "rinApp"
local DWI = rinApp.addK400("K401")

local msg = ''

-- This is a timer callback that moves a message across the screen
local function slide()

 -- Check if message is finished
 if msg == false then
 return
 end

 -- If there's nothing left to move, clear the screen
 -- and write the msg to false so we know we're done
 if msg == '' then
 DWI.writeBotLeft('')
 msg = false

 -- If there's something left to write, write a substring of 9 characters
 -- to the device and remove a character from the message
 else
 DWI.writeBotLeft(string.format('%-s',string.upper(string.sub(msg,1,9))))
 msg = string.sub(msg,2)
 end
end

-- Start a time that will call slide
-- The timer has a 400ms delay between iterations, which can be easily altered
-- The timer has a 100ms delay before it starts for the first time
local slider = rinApp.system.timers.addTimer(400, 100, slide)

-- Format the string for slide
local function showMarquee (s)
 msg = ' ' .. s
end

M4223 Operation Manual 1.00

 Page 29

-- Key handler
local function handleKey(key, state)
 showMarquee(string.format("%s Pressed ", key))
 if key == DWI.KEY_CANCEL and state == 'long' then
 rinApp.running = false
 end
 return true -- key handled so don't send back to instrument
end

DWI.setKeyGroupCallback(DWI.keyGroup.all, handleKey)

-- Print a message
showMarquee("This is a very long message for a small LCD screen")

-- Loop and print key presses to the screen
-- If abort is pressed, break the loop
while rinApp.running do
 system.handleEvents()
end

-- Clean up and exit
rinApp.system.timers.removeTimer(slider)
rinApp.cleanup()

7.4. Multiple-Device Control
The multi-device application shows a way of remotely controlling of multiple R400s
by adding two DWI connections to the system.

multi-device.lua

-- multi-device
--
-- Demonstrates how the libraries can control multiple devices
--
-- Displays 'hello' to two instruments and closes when a button is pressed on
-- a certain instrument.

local rinApp = require "rinApp"

local DWIa = rinApp.addK400("K401")
local DWIb = rinApp.addK400("K401","172.17.1.139", 2222)

DWIa.writeBotLeft("Hello")
DWIa.writeBotRight("A")

DWIb.writeBotLeft("Hello")
DWIb.writeBotRight("B")

-- wait for keypress from DWIa
DWIa.getKey()

-- Clean up the devices
rinApp.cleanup()

os.exit()

M4223 Operation Manual 1.00

Page 30

8. Rinstrum Packages
8.1. Luamux – L001.5xx.502

Luamux is an addition to the M4223 that allows the device to simultaneously serve
multiple clients, which was previously not possible with the M4221. It provides an
interface to the R400 in either TCP mode (default), or in UDP mode.

The configuration file can be found in /etc/Rinstrum/muxconfig.lua.

To change the external connection type, the table's tcpEConfig and udpEConfig
can be set with the appropriate settings, and then _M.ext can be set to point to the
desired configuration table.
The logging method and level can also be set in this file. By default the system will
log to a temporary file, but it can be configured to log to a USB stick or an SQL
database. Instructions on how to configure this can be found on the LuaLogging
website.

8.2. Time Sync – L001.5xx.504
To maintain effective timestamps on data logging, the M4223 syncs its clock with
the R400 on boot up. This process is invisible to the user.

8.3. Automatic Script Starting – L001.5xx.505
To assist users in automating their R400s, an automatic script service has been
provided. In /home/autostart/run.lua, users have access to a Lua script that
will be run on start-up. This script can be used for a variety of functions, and
examples are given in the file for how to start other Lua programs and how to
backup log files.
Run.lua is not appropriate for concurrently starting Lua applications that will run
over a period of time. To do this, create another Lua file within the /home/autostart
folder and the automatic script starter will detect and run it alongside run.lua.

Any script that is placed within the /home/autostart folder will have its standard
output and error redirected to a file stored in /var/log and will be appended with
the redirection type. For example, run.lua will create /var/log/run.lua.out
and /var/log/run.lua.err.

M4223 Operation Manual 1.00

 Page 31

9. Developer Environment
9.1. Environment Setup

9.1.1. Windows
To develop on Windows for the M4223, any FTP client and text editor can be used.
The files can then be pulled off the device, modified, and pushed back up.
The recommended method is to use Notepad++ with the NppFTP plugin. This can
be combined with PuTTY (for getting a terminal interface), and FileZilla if a more
robust FTP client is needed for transferring files.
To assist in setting this up, a Ninite installer containing Notepad++, PuTTY and
FileZilla is available.
Once this has been set up, the user can copy the Rinstrum libraries to the device
(e.g. copy to /home) and begin developing.

♦ Installer
When developing on Windows, it is recommended that you have (at least)
Notepad++, FileZilla, and Putty. An installer has been included with the libraries
that will silently install this software on your system.
If you would like to configure the installation, it is recommended that you
download the applications individually and install them.

♦ Notepad++ Setup
Notepad++'s NppFTP plugin can be used to allow easy editing of files stored on
the M4223.

Once NppFTP has been brought up, the profile can be configured for the
M4223 you are using.

M4223 Operation Manual 1.00

Page 32

Once the profile window is open, press 'Add new' and name the device 'M4223',
or similar.
Only the information on the first page needs to be set, specifically the device IP
address in Hostname (see 2.5 Verify the Connection), and the username and
password (see 2.6.1 Logging In to the Remote Interface).

Once this has been done, press close, and click on the connection button to
form a connection to the module.

Files can now be navigates to in the side bar, and can be opened in Notepad++
by double clicking on them. When they are saved, they will be written back to
the module.

M4223 Operation Manual 1.00

 Page 33

♦ Putty Setup
Once putty has been downloaded, it can be configured as below (for the IP
address see 2.5 Verify the Connection). This gives a Telnet connection to the
device, as shown in 2.6 Remote Interface

♦ FileZilla Setup
FileZilla can be set up by entering the IP address (for the IP address see 2.5
Verify the Connection) and pressing the Quickconnect button.

Once this has been done files can be dragged and dropped from users
computer to the module.

9.1.2. Windows (Eclipse)
It is possible to set up Eclipse in windows to develop applications, but this is not
recommended as it is more difficult to run/debug code for a Linux system on the
Windows environment.

9.1.3. Linux
To develop on Linux for the M4223, Eclipse with the Lua Development Tools
software (http://www.eclipse.org/koneki/ldt/) is recommended, and FileZilla is
recommended for transferring files to the device. The device can be accessed using
Telnet via the shell.
This method of development is recommended for experienced users who will be
making complex scripts.

http://www.eclipse.org/koneki/ldt/

M4223 Operation Manual 1.00

Page 34

 Instructions on how to set this up are available from

9.2. Library Usage

9.2.1. PC
The library can be used on a pc by requiring rinApp.lua. This can be done by writing
the new Lua script within the same folder that rinApp.lua is stored in, or by changing
the require statement to the remote location of rinApp.lua.
This can also be done by modifying the package.path variable in your Lua script.

9.2.2. Module
The library can be used on the module the same way it can be used on the PC, but
if the libraries are being used for multiple applications it is possible to save space by
copying the contents of '/src' to '/usr/local/share/lua/5.1'.

After this has been done, the contents of '/test' can be executed from anywhere
on the module.

